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The motion of an individual deformable erythrocyte in a capillary whose diameter is smaller than the particle
diameter has been considered. The problem formulation is based on the Lighthill–Fitzgerald model. The eryth-
rocyte drag at a given pressure difference acting on its frontal surface has been determined. The dependences
of the relative drag on the dimensionless parameters of the model as well as on the minimum thickness of the
lubricating layer and the rate of motion of the erythrocyte on the pressure at opposite edges of the cell have
been obtained.

Simulation of the blood flow in the microcirculatory system is one of the key problems arising in quantitative
descriptions of the convective heat transfer and the thermoregulation and oxygenation of living biological tissues. As
compared to the hemodynamic problems for arteries, this problem is more complicated, since the blood in tiny vessels
can no longer be considered as a continuous medium. The main (greater in number) form elements of blood — eryth-
rocytes — that comparable in diameter to capillaries, and they are sometimes larger than capillaries. Motion of red
blood cells under such conditions turns out to be possible only due to the high deformability of their membranes and
the formation between the surface of these cells and the capillary wall of a thin plasma layer acting as a lubricant.

The biomechanical properties of blood particles and vascular walls, as well as the blood flow in tiny ves-
sels, have been the subject of many papers, including [1–6]. In [2], it was shown that in the gap between two eryth-
rocytes moving through a capillary (the so-called "bolus") plasma should circulate in the direction of the particle
motion on the axis and in the reverse direction by the wall. In [4], the deformation of erythrocytes in capillaries de-
pending on the vessel diameter and the rate of motion of particles was investigated experimentally. The ratios were
obtained and the velocity profile of plasma in the bolus was calculated. In [5], the motion of erythrocytes through
capillaries with diameters close to critical ones was investigated. The size of the latter depends on the geometric and
mechanical properties of the red blood cells: they deform at a constant volume (the liquid inside erythrocytes is in-
compressible) and an almost constant area of the surface (the erythrocytic membrane is poorly stretchable). In [6],
the motion of a suspension of elastic incompressible spheres through a capillary was considered. The development of
this model was motivated by the interest in investigating the motion of leukocytes (white blood cells) through the
microcirculatory system.

One of the earliest physicomathematical models of blood flow in narrow capillaries is the Lighthill model [7]
constructed in the approximations of lubrication theory. The local elastic properties of the vessel wall and the erythro-
cyte in the first approximation in [7] were assumed to be proportional to the excess pressure. The equation of motion
was reduced to the Reynolds equation for the lubricating layer. The Lighthill model was further developed by Fitzger-
ald [8]. The latter, assuming that the erythrocyte has a finite length, considered the elastic properties of this cell in
more detail and obtained a solution of the equation of motion for the case of axial symmetry of the erythrocyte, as
well as in the absence of such a symmetry and in the presence of filtration liquid flows through the penetrable capil-
lary walls.

The simulation of the erythrocyte motion in a narrow capillary attempted in [7, 8] and later in [9, 10] was
not carried to the calculation of the hemodynamic erythrocyte and plasma drag created by the narrow capillary walls.
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The analysis in [7, 8] was performed with the use of dimensionless complexes characterizing the erythrocyte velocity
and the relative value of the plasma flow. These and some other parameters were considered to be independent, and
the final result of the calculations according to the model proposed by Lighthill was the relative value of the pressure
at the distal end of the erythrocyte. The aim of the present work is to simulate the hemodynamic drag of an individual
erythrocyte at given values of the pressure drop at its ends, as well as at other geometric and rheophysical parameters.

Calculation of the Motion of an Individual Erythrocyte in a Capillary. Our numerical analysis of the mo-
tion of an individual erythrocyte in a capillary is based on the Lighthill model in Fitzgerald’s interpretation [8]. We
assume the particle (erythrocyte) to be finite in integrating the continuity equation. According to Lighthill’s hypothesis,
the gap width between the erythrocyte membrane surface and the capillary wall is described by the expression

h (x) = r0 − R (x) + (α + β) [p (x) − p0] . (1)

For the skin capillaries, we assume α = 0, i.e., the capillary walls do not deform under the action of pressure.
The erythrocyte profile is often modeled in the form of a parabola as the most suitable approximation of the

parachute-like (or bullet-like) shape characteristic of its motion in a capillary:

R (x) = r0 √1 − x2κ ⁄ r0  − β (p − p0) . (2)

According to Fitzgerald, the pressure p0 can be determined from the relation
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If E is small enough (at r0 = 4 µm E < 0.3), then Rc C a/(2r0), i.e., this parameter is approximately equal to the ratio
of the rear part of the erythrocyte membrane to the capillary diameter. When the erythrocyte size in the stress-free
state is larger than the values of the capillary clearance, the parameter Rc > 1 and, vice versa, if the size of the stress-
free erythrocyte is smaller than the capillary clearance, then Rc < 1.

The parameter g entering into expression (3) represents the coordinate of the distal end of the erythrocyte and
is determined from the condition of vanishing of the particle radius here:
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where ∆p = p(−g) −p(g).
According to the methodology of lubrication theory, Lighthill (and Fitzgerald) obtained the Reynolds equation

(analog of the equation of motion for the gap-width-averaged plasma velocity) in the form
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The balance of the forces acting at opposite ends of the particle is described by the following expression:
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Unlike the above-mentioned works, we dedimensionalize the above equations in a radically different way
without introducing complexes depending simultaneously on two unknown parameters — the erythrocyte velocity U
and the plasma flow Q:
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As a result, the Reynolds equation and the mass equation take the form
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The condition of compatibility of initial data is the inequality E < 1 ⁄ 

P−G


. For this inequality to be fulfilled

at small values of E, it is essential that Rc be smaller than 2. If Rc < 1, then the erythrocyte will pass through the cap-
illary at any pressure and a positive drop of pressure at the capillary ends.

To find the unknown parameters u and q, we take into account that they are independent of X and, conse-
quently, can be removed from the integral sign in (9). As a result, we find one of the equations needed to determine
these parameters. The second equation is obtained after integrating expression (8) with respect to the gap width be-
tween the erythrocyte membrane and the capillary wall. In the final analysis, we have the following system of alge-
braic equations:

A11u + A12q = 1 ,   A21u + A22q = 1 ⁄ 2 (10)

with coefficients
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In the general case, this system is nonlinear, since the relative radius of the erythrocyte depends on the pressure,
whose profile is connected with the sought parameters u and q. We have realized a computer program for determining
the erythrocyte velocity and the plasma flow at a given pressure drop on the erythrocyte. The algorithm is based on
the solution of the system of equations (10) at some given (as the initial approximation) pressure profile. The new
pressure profile is determined from the solution of the differential equation (8) with the found approximate values of
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the parameters u and q. These parameters and the pressure distribution are redetermined in the iteration process until
the known (given) value of the pressure at the distal end of the capillary is obtained.

Results and Discussion. Figure 1 shows the dependences on the dimensionless complexes E and Rc of the
relative drag as a single erythrocyte is moving in the distal part of the capillary compared to the drag of a portion of
plasma of the same extent as the erythrocyte. A sharp increase in this relative drag at small E and small capillary radii
or at large values of the complex Rc can be stated. In the case of fairly large sizes of the capillary, the ratio T/Tpl can
turn out to be less than unity, which apparently indicates that such flow conditions are inconsistent with the approxi-
mation of the thin layer between the erythrocyte membrane and the capillary wall, in which the Lighthill–Fitzgerald
model was constructed.

The minimum thickness of the plasma layer between the erythrocyte membrane and the capillary wall, as
well as the erythrocyte velocity, are determined by the value of the pressure drop at the erythrocyte ends. The de-
pendence of these parameters on ∆p is shown in Fig. 2. Noteworthily (see Fig. 2a), the dependence of the plasma-
layer thickness on ∆p is revealed only at an insignificant pressure difference. For the physiological conditions and at
a given value of the medium pressure in the region where the erythrocyte is located, the plasma-layer thickness turns
out to be weakly dependent on ∆p. The numerical results presented in Figs. 1 and 2 were obtained at a value of
this pressure equal to 10 Torr. For the simulation conditions the erythrocyte velocity is proportional to the pressure
drop on the cell.

Fig. 1. Dependence of the relative drag on the parameters E (a) [1), capillary
radius of 2.5; 2) 3.75; 3) 5; 4) 3.75 µm] and Rc (b).

Fig. 2. Influence of pressure drops at the erythrocyte ends on the minimum
thickness of the plasma layer between the erythrocyte membrane and the capil-
lary wall (a), as well as on the erythrocyte velocity (b): 1) capillary radius of
2.5; 2) 3.75; 3) 5 µm. hmin, µm; ∆p, Torr; U, mm/sec.
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NOTATION

a, arc length of the rear part of the erythrocyte, m; E, dimensionless parameter characterizing the pressure
drop on the erythrocyte; G, dimensionless coordinate of the distal end of the erythrocyte; g, coordinate of the distal
end of the erythrocyte, m; h(x), gap width between the erythrocyte membrane surface and the capillary wall, m; Lc,
erythrocyte length, m; n, dimensionless coefficient equal to the ratio of the radii of curvature of the outer (frontal) and
inner (rear) surface of the erythrocyte; P, dimensionless pressure; p, pressure, Pa; p0, characteristic pressure (at which
the erythrocyte would completely fill the capillary clearance), Pa; Q, value of the flow (volumetric rate of flow of
plasma forced against the erythrocyte motion assigned to the perimeter of the capillary cross section), m2/sec; q, di-
mensionless flow value; R(x), stress-free erythrocyte profile, m; Rc, dimensionless parameter characterizing mechanical
properties of the erythrocyte; r0, capillary radius; T, flow drag, Pa⋅sec/m3; U, erythrocyte velocity, m/sec; u, dimen-
sionless erythrocyte velocity; X, dimensionless length along the vessel axis x, longitudinal (along the vessel axis) coor-
dinate, m; α, compliance coefficient of the capillary wall, m/Pa; β, compliance coefficient of the erythrocyte
membrane, m/Pa; ∆p, pressure drop, Pa; κ, dimensionless curvature of the meridional section of the erythrocyte at the
point with its maximum diameter; µ, plasma viscosity, Pa⋅sec; ρ, dimensionless particle profile; χ, dimensionless lubri-
cating layer thickness of plasma. Subscripts: pl, plasma; c, cell (erythrocyte); min, minimum value of the parameter.
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